If x =1–√2 , then the value of x+
1/x is
You asked:
Given \(x = 1 - \sqrt{2}\) evaluate the expression \(x + \frac{1}{x}\).
MathBot Answer:
\[x + \frac{1}{x} = 1 - \sqrt{2} + \frac{1}{1 - \sqrt{2}} = \frac{1}{1 - \sqrt{2}} - \sqrt{2} + 1\]
If x =1–√2 , then the value of x+
1/x is
You asked:
MathBot Answer:
\[x + \frac{1}{x} = 1 - \sqrt{2} + \frac{1}{1 - \sqrt{2}} = \frac{1}{1 - \sqrt{2}} - \sqrt{2} + 1\]