(1/(√(2π)* 2.67))*e^((-(10.59-4.11)^2)/(2*7.15))

asked by guest
on Nov 17, 2024 at 8:16 am



You asked:

Evaluate the expression: 12π2.67e(10.594.11)227.15\frac{1}{\sqrt{2 \pi} \cdot 2.67} {e}^{\frac{-{\left( 10.59 - 4.11 \right)}^{2}}{2 \cdot 7.15}}

MathBot Answer:

12π2.67e(10.594.11)227.15=502267πe52488178750.00792757085269139177627395012868\frac{1}{\sqrt{2 \pi} \cdot 2.67} {e}^{\frac{-{\left( 10.59 - 4.11 \right)}^{2}}{2 \cdot 7.15}} = \frac{50 \sqrt{2}}{267 \sqrt{\pi} e^{\frac{52488}{17875}}} \approx 0.00792757085269139177627395012868


12π2.67e(10.594.11)227.15=12π(2+67100)e(10+59100(4+11100))212(7+15100)=12π(2+67100)e(10+59100(4+11100))212(7+15100)=12π267100e(10+59100(4+11100))212(7+15100)=12671002πe(10+59100(4+11100))212(7+15100)=5026721πe(10+59100(4+11100))212(7+15100)=5026721πe(10+59100411100)212(7+15100)=5026721πe(1059100411100)212(7+15100)=5026721πe(16225)212(7+15100)=5026721πe2624462512(7+15100)=5026721πe2624462512(7+320)=5026721πe262446251214320=5026721πe26244625114310=5026721πe5248817875=5026721π1e5248817875=5026721πe5248817875\begin{aligned}\frac{1}{\sqrt{2 \pi} \cdot 2.67} {e}^{\frac{-{\left( 10.59 - 4.11 \right)}^{2}}{2 \cdot 7.15}}&=\frac{1}{\sqrt{2 \cdot \pi} \cdot \left(2 + \frac{67}{100}\right)} \cdot e^{- \cdot \left(10 + \frac{59}{100} - \left(4 + \frac{11}{100}\right)\right)^{2} \cdot \frac{1}{2 \cdot \left(7 + \frac{15}{100}\right)}}\\&=\frac{1}{\sqrt{2} \cdot \sqrt{\pi} \cdot \left(2 + \frac{67}{100}\right)} \cdot e^{- \cdot \left(10 + \frac{59}{100} - \left(4 + \frac{11}{100}\right)\right)^{2} \cdot \frac{1}{2 \cdot \left(7 + \frac{15}{100}\right)}}\\&=\frac{1}{\sqrt{2} \cdot \sqrt{\pi} \cdot \frac{267}{100}} \cdot e^{- \cdot \left(10 + \frac{59}{100} - \left(4 + \frac{11}{100}\right)\right)^{2} \cdot \frac{1}{2 \cdot \left(7 + \frac{15}{100}\right)}}\\&=\frac{1}{\frac{267}{100} \cdot \sqrt{2} \cdot \sqrt{\pi}} \cdot e^{- \cdot \left(10 + \frac{59}{100} - \left(4 + \frac{11}{100}\right)\right)^{2} \cdot \frac{1}{2 \cdot \left(7 + \frac{15}{100}\right)}}\\&=\frac{50}{267} \cdot \sqrt{2} \cdot \frac{1}{\sqrt{\pi}} \cdot e^{- \cdot \left(10 + \frac{59}{100} - \left(4 + \frac{11}{100}\right)\right)^{2} \cdot \frac{1}{2 \cdot \left(7 + \frac{15}{100}\right)}}\\&=\frac{50}{267} \cdot \sqrt{2} \cdot \frac{1}{\sqrt{\pi}} \cdot e^{- \cdot \left(10 + \frac{59}{100} - \frac{411}{100}\right)^{2} \cdot \frac{1}{2 \cdot \left(7 + \frac{15}{100}\right)}}\\&=\frac{50}{267} \cdot \sqrt{2} \cdot \frac{1}{\sqrt{\pi}} \cdot e^{- \cdot \left(\frac{1059}{100} - \frac{411}{100}\right)^{2} \cdot \frac{1}{2 \cdot \left(7 + \frac{15}{100}\right)}}\\&=\frac{50}{267} \cdot \sqrt{2} \cdot \frac{1}{\sqrt{\pi}} \cdot e^{- \cdot \left(\frac{162}{25}\right)^{2} \cdot \frac{1}{2 \cdot \left(7 + \frac{15}{100}\right)}}\\&=\frac{50}{267} \cdot \sqrt{2} \cdot \frac{1}{\sqrt{\pi}} \cdot e^{- \cdot \frac{26244}{625} \cdot \frac{1}{2 \cdot \left(7 + \frac{15}{100}\right)}}\\&=\frac{50}{267} \cdot \sqrt{2} \cdot \frac{1}{\sqrt{\pi}} \cdot e^{- \cdot \frac{26244}{625} \cdot \frac{1}{2 \cdot \left(7 + \frac{3}{20}\right)}}\\&=\frac{50}{267} \cdot \sqrt{2} \cdot \frac{1}{\sqrt{\pi}} \cdot e^{- \cdot \frac{26244}{625} \cdot \frac{1}{2 \cdot \frac{143}{20}}}\\&=\frac{50}{267} \cdot \sqrt{2} \cdot \frac{1}{\sqrt{\pi}} \cdot e^{- \cdot \frac{26244}{625} \cdot \frac{1}{\frac{143}{10}}}\\&=\frac{50}{267} \cdot \sqrt{2} \cdot \frac{1}{\sqrt{\pi}} \cdot e^{- \frac{52488}{17875}}\\&=\frac{50}{267} \cdot \sqrt{2} \cdot \frac{1}{\sqrt{\pi}} \cdot \frac{1}{e^{\frac{52488}{17875}}}\\&=\frac{50}{267} \cdot \sqrt{2} \cdot \frac{1}{\sqrt{\pi}} \cdot e^{- \frac{52488}{17875}}\end{aligned}


ee is Euler's number, a mathematical constant that is approximately 2.718282.71828.