3.99+2.49+4.99
You asked:
Evaluate the expression: \(3.99 + 2.49 + 4.99\)
MathBot Answer:
\[ 3.99 + 2.49 + 4.99 = \frac{1147}{100} = 11.47 \]
The sum can be computed by rewriting each term over a common denominator, where the least common denominator of \(\frac{3}{1}\), \(\frac{99}{100}\), \(\frac{2}{1}\), \(\frac{49}{100}\), \(\frac{4}{1}\), and \(\frac{99}{100}\) is \(100\). \[ \begin{aligned} 3.99 + 2.49 + 4.99 &= \frac{3 \cdot 100}{1 \cdot 100} + \frac{99 \cdot 1}{100 \cdot 1} + \frac{2 \cdot 100}{1 \cdot 100} + \frac{49 \cdot 1}{100 \cdot 1} + \frac{4 \cdot 100}{1 \cdot 100} + \frac{99 \cdot 1}{100 \cdot 1} \\ &= \frac{300 + 99 + 200 + 49 + 400 + 99}{100} \\ &= \frac{1147}{100} \end{aligned} \]