1/3 ln (x) - 1/5 ln y

asked by guest
on Nov 14, 2024 at 5:28 pm



You asked:

Evaluate the expression: \(\frac{1}{3 \cdot \ln\left( x \right)} - \frac{1}{5 \cdot \ln\left( y \right)}\)

MathBot Answer:

Evaluated



\(\displaystyle \frac{1}{3 \cdot \ln\left( x \right)} - \frac{1}{5 \cdot \ln\left( y \right)} = - \frac{1}{5 \log{\left(y \right)}} + \frac{1}{3 \log{\left(x \right)}} \)


Factored

\[\frac{1}{3 \cdot \ln\left( x \right)} - \frac{1}{5 \cdot \ln\left( y \right)} = - \frac{3 \log{\left(x \right)} - 5 \log{\left(y \right)}}{15 \log{\left(x \right)} \log{\left(y \right)}}\]