1/3 ln (x) - 1/5 ln y
You asked:
Evaluate the expression: \(\frac{1}{3 \cdot \ln\left( x \right)} - \frac{1}{5 \cdot \ln\left( y \right)}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{1}{3 \cdot \ln\left( x \right)} - \frac{1}{5 \cdot \ln\left( y \right)} = - \frac{1}{5 \log{\left(y \right)}} + \frac{1}{3 \log{\left(x \right)}} \)
Factored
\[\frac{1}{3 \cdot \ln\left( x \right)} - \frac{1}{5 \cdot \ln\left( y \right)} = - \frac{3 \log{\left(x \right)} - 5 \log{\left(y \right)}}{15 \log{\left(x \right)} \log{\left(y \right)}}\]