\frac{10\left(\left(622\right)\left(377\right)\right)-\left(622\right)\left(377\right)}{\left[10\left(622^{2}\right)-\left(622\right)^{2}\right]-\left[10\left(377^{2}\right)-\left(377\right)^{2}\right]}

asked by guest
on Dec 08, 2024 at 4:34 am



You asked:

Evaluate the expression: 106223776223771062226222(1037723772)\frac{10 \cdot 622 \cdot 377 - 622 \cdot 377}{10 \cdot {622}^{2} - {622}^{2} - \left(10 \cdot {377}^{2} - {377}^{2}\right)}

MathBot Answer:

106223776223771062226222(1037723772)=234494244755=0.9580764437907295050152193009335866478723621\frac{10 \cdot 622 \cdot 377 - 622 \cdot 377}{10 \cdot {622}^{2} - {622}^{2} - \left(10 \cdot {377}^{2} - {377}^{2}\right)} = \frac{234494}{244755} = 0.9\overline{580764437907295050152193009335866478723621}


106223776223771062226222(1037723772)=102344946223771062226222(1037723772)=23449406223771062226222(1037723772)=23449402344941062226222(1037723772)=21104461062226222(1037723772)=2110446103868846222(1037723772)=211044638688406222(1037723772)=21104463868840386884(1037723772)=21104463481956(1037723772)=21104463481956(101421293772)=21104463481956(14212903772)=21104463481956(1421290142129)=211044634819561279161=21104462202795=234494244755\begin{aligned}\frac{10 \cdot 622 \cdot 377 - 622 \cdot 377}{10 \cdot {622}^{2} - {622}^{2} - \left(10 \cdot {377}^{2} - {377}^{2}\right)}&=\frac{10 \cdot 234494 - 622 \cdot 377}{10 \cdot {622}^{2} - {622}^{2} - \left(10 \cdot {377}^{2} - {377}^{2}\right)}\\&=\frac{2344940 - 622 \cdot 377}{10 \cdot {622}^{2} - {622}^{2} - \left(10 \cdot {377}^{2} - {377}^{2}\right)}\\&=\frac{2344940 - 234494}{10 \cdot {622}^{2} - {622}^{2} - \left(10 \cdot {377}^{2} - {377}^{2}\right)}\\&=\frac{2110446}{10 \cdot {622}^{2} - {622}^{2} - \left(10 \cdot {377}^{2} - {377}^{2}\right)}\\&=\frac{2110446}{10 \cdot 386884 - {622}^{2} - \left(10 \cdot {377}^{2} - {377}^{2}\right)}\\&=\frac{2110446}{3868840 - {622}^{2} - \left(10 \cdot {377}^{2} - {377}^{2}\right)}\\&=\frac{2110446}{3868840 - 386884 - \left(10 \cdot {377}^{2} - {377}^{2}\right)}\\&=\frac{2110446}{3481956 - \left(10 \cdot {377}^{2} - {377}^{2}\right)}\\&=\frac{2110446}{3481956 - \left(10 \cdot 142129 - {377}^{2}\right)}\\&=\frac{2110446}{3481956 - \left(1421290 - {377}^{2}\right)}\\&=\frac{2110446}{3481956 - \left(1421290 - 142129\right)}\\&=\frac{2110446}{3481956 - 1279161}\\&=\frac{2110446}{2202795}\\&=\frac{234494}{244755}\end{aligned}