1.02^2=(1+(x/4))^4
You asked:
MathBot Answer:
The solutions are given by the formula: \[x = \left(-4 + \frac{2 \sqrt{102} \cos{\left(\frac{\pi k}{2} \right)}}{5}\right) + \frac{2 \sqrt{102} \sin{\left(\frac{\pi k}{2} \right)}}{5} i\] where \(k\) is an integer in \(0 \le k < 4\).
There are \(2\) real solutions.
There are \(2\) solutions with nonzero imaginary part.
Real solutions: \[\begin{aligned}x &= -4 + \frac{2 \sqrt{102}}{5} \\&\approx 0.039801975\\x &= -4 - \frac{2 \sqrt{102}}{5} \\&\approx -8.039802\end{aligned}\]
Solutions with nonzero imaginary part: \[\begin{aligned}x &= -4 + \frac{2 \sqrt{102} i}{5} \\&= -4 + 4.039802 i\\x &= -4 - \frac{2 \sqrt{102} i}{5} \\&= -4 -4.039802 i\end{aligned}\]
\(i\) is the imaginary unit, defined as \(i^2 = -1\).