(b^2+4b+4)(-b+3)=
You asked:
Evaluate the expression: \(\left({b}^{2} + 4 b + 4\right) \left(-b + 3\right)\)
MathBot Answer:
Evaluated
\(\displaystyle \left({b}^{2} + 4 b + 4\right) \left(-b + 3\right) = \left(3 - b\right) \left(b^{2} + 4 b + 4\right) \)
Expanded
\[\left({b}^{2} + 4 b + 4\right) \left(-b + 3\right) = - b^{3} - b^{2} + 8 b + 12\]
Factored
\[\left({b}^{2} + 4 b + 4\right) \left(-b + 3\right) = - \left(b - 3\right) \left(b + 2\right)^{2}\]