solve the following integral

(sin x − 3 cos x +2x + sec x tan x − sec2 x +x^2 + 1) dx

asked by guest
on Nov 27, 2024 at 4:44 pm



You asked:

Evaluate the expression: sin(x)3cos(x)+2x+sec(x)tan(x)sec(2)x+x2+1dx\int{\sin\left( x \right) - 3 \cos\left( x \right) + 2 x + \sec\left( x \right) \tan\left( x \right) - \sec\left( 2 \right) \cdot x + {x}^{2} + 1}dx

MathBot Answer:

Simplified: sin(x)3cos(x)+2x+sec(x)tan(x)sec(2)x+x2+1dx=x33+x2x2sec(2)2+x3sin(x)cos(x)+1cos(x)\int{\sin\left( x \right) - 3 \cos\left( x \right) + 2 x + \sec\left( x \right) \tan\left( x \right) - \sec\left( 2 \right) \cdot x + {x}^{2} + 1}dx = \frac{x^{3}}{3} + x^{2} - \frac{x^{2} \sec{\left(2 \right)}}{2} + x - 3 \sin{\left(x \right)} - \cos{\left(x \right)} + \frac{1}{\cos{\left(x \right)}}