solve the following integral
(sin x − 3 cos x +2x + sec x tan x − sec2 x +x^2 + 1) dx
You asked:
Evaluate the expression: \(\int{\sin\left( x \right) - 3 \cdot \cos\left( x \right) + 2 x + \sec\left( x \right) \cdot \tan\left( x \right) - \sec\left( 2 \right) \cdot x + {x}^{2} + 1}dx\)
MathBot Answer:
Simplified: \[\int{\sin\left( x \right) - 3 \cdot \cos\left( x \right) + 2 x + \sec\left( x \right) \cdot \tan\left( x \right) - \sec\left( 2 \right) \cdot x + {x}^{2} + 1}dx = \frac{x^{3}}{3} + x^{2} - \frac{x^{2} \sec{\left(2 \right)}}{2} + x - 3 \sin{\left(x \right)} - \cos{\left(x \right)} + \frac{1}{\cos{\left(x \right)}}\]