nn2n^{n-2} *( n2n^{2} -2*n*n+n*n-n)* ene^{-n}

asked by guest
on Nov 16, 2024 at 11:40 am



You asked:

Evaluate the expression: nn2(n22nn+nnn)en{n}^{n - 2} \left({n}^{2} - 2 n \cdot n + n \cdot n - n\right) \cdot {e}^{-n}

MathBot Answer:

Evaluated



nn2(n22nn+nnn)en=nn2nen\displaystyle {n}^{n - 2} \left({n}^{2} - 2 n \cdot n + n \cdot n - n\right) \cdot {e}^{-n} = - n^{n - 2} n e^{- n}


Expanded

nn2(n22nn+nnn)en=nnenn{n}^{n - 2} \left({n}^{2} - 2 n \cdot n + n \cdot n - n\right) \cdot {e}^{-n} = - \frac{n^{n} e^{- n}}{n}


ee is Euler's number, a mathematical constant that is approximately 2.718282.71828.