$n^{n-2}$ *( $n^{2}$ -2*n*n+n*n-n)* $e^{-n}$
You asked:
Evaluate the expression: \({n}^{n - 2} \cdot \left({n}^{2} - 2 n n + n n - n\right) \cdot {e}^{-n}\)
MathBot Answer:
Evaluated
\(\displaystyle {n}^{n - 2} \cdot \left({n}^{2} - 2 n n + n n - n\right) \cdot {e}^{-n} = - n^{n - 2} n e^{- n} \)
Expanded
\[{n}^{n - 2} \cdot \left({n}^{2} - 2 n n + n n - n\right) \cdot {e}^{-n} = - \frac{n^{n} e^{- n}}{n}\]
\(e\) is Euler's number, a mathematical constant that is approximately \(2.71828\).