\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}

asked by guest
on Nov 19, 2024 at 5:16 am



You asked:

Evaluate the expression: (4+15)(106)415\left(4 + \sqrt{15}\right) \left(\sqrt{10} - \sqrt{6}\right) \cdot \sqrt{4 - \sqrt{15}}

MathBot Answer:

(4+15)(106)415=415(15+4)(6+10)2.0\left(4 + \sqrt{15}\right) \left(\sqrt{10} - \sqrt{6}\right) \cdot \sqrt{4 - \sqrt{15}} = \sqrt{4 - \sqrt{15}} \left(\sqrt{15} + 4\right) \left(- \sqrt{6} + \sqrt{10}\right) \approx 2.0


(4+15)(106)415=(4+15)(106)415=415(4+15)(106)\begin{aligned}\left(4 + \sqrt{15}\right) \left(\sqrt{10} - \sqrt{6}\right) \cdot \sqrt{4 - \sqrt{15}}&=\left(4 + \sqrt{15}\right) \cdot \left(\sqrt{10} - \sqrt{6}\right) \cdot \sqrt{4 - \sqrt{15}}\\&=\sqrt{4 - \sqrt{15}} \cdot \left(4 + \sqrt{15}\right) \cdot \left(\sqrt{10} - \sqrt{6}\right)\end{aligned}