if a = 2\sqrt{2} + 1, b = 3\sqrt{3} - 2\sqrt{2} and c = 6\sqrt{6} + 2 2\sqrt{2} then the value of a2a^{2} + b2b^{2} - c is

asked by guest
on Apr 04, 2025 at 11:01 pm



MathBot Answer:

a2+b2c=226+(2+3)2+(1+2)2{a}^{2} + {b}^{2} - c = - 2 \sqrt{2} - \sqrt{6} + \left(- \sqrt{2} + \sqrt{3}\right)^{2} + \left(1 + \sqrt{2}\right)^{2}


a2+b2c=(2+1)2+(32)26+22=(32)2+(2+1)26+22=(2+1)2+(32)2622=226+(2+3)2+(1+2)2\begin{aligned}a^{2} + b^{2} - c&=\left(\sqrt{2} + 1\right)^{2} + \left(\sqrt{3} - \sqrt{2}\right)^{2} - \sqrt{6} + 2 \sqrt{2}\\&=\left(\sqrt{3} - \sqrt{2}\right)^{2} + \left(\sqrt{2} + 1\right)^{2} - \sqrt{6} + 2 \sqrt{2}\\&=\left(\sqrt{2} + 1\right)^{2} + \left(\sqrt{3} - \sqrt{2}\right)^{2} - \sqrt{6} - 2 \sqrt{2}\\&=- 2 \sqrt{2} - \sqrt{6} + \left(- \sqrt{2} + \sqrt{3}\right)^{2} + \left(1 + \sqrt{2}\right)^{2}\end{aligned}