square root 8 plus square root minus square root of 32

asked by guest
on Nov 14, 2024 at 5:49 pm



You asked:

Evaluate the expression: \(\sqrt{8 + \sqrt{-\sqrt{32}}}\)

MathBot Answer:

\[\sqrt{8 + \sqrt{-\sqrt{32}}} = \sqrt{8 + 2 \cdot \sqrt[4]{2} i}\]


\[\begin{aligned}\sqrt{8 + \sqrt{-\sqrt{32}}}& = \sqrt{8 + \sqrt{- \sqrt{32}}}\\& = \sqrt{8 + \sqrt{- 4 \cdot \sqrt{2}}}\\& = \sqrt{8 + \sqrt{-4 \cdot \sqrt{2}}}\\& = \sqrt{8 + 2 \cdot i \cdot \sqrt[4]{2}}\end{aligned}\]