(0.36 Log^2 0.36)-(0.64 Log^2 0.64)

asked by guest
on Nov 26, 2024 at 7:30 pm



You asked:

Evaluate the expression: 0.36log(0.36)20.64log(0.64)20.36 {\log\left( 0.36 \right)}^{2} - 0.64 {\log\left( 0.64 \right)}^{2}

MathBot Answer:

0.36log(0.36)20.64log(0.64)2=16log(1625)225+9log(925)2250.248287463867734942536910714216470.36 {\log\left( 0.36 \right)}^{2} - 0.64 {\log\left( 0.64 \right)}^{2} = - \frac{16 \log{\left(\frac{16}{25} \right)}^{2}}{25} + \frac{9 \log{\left(\frac{9}{25} \right)}^{2}}{25} \approx 0.24828746386773494253691071421647


0.36log(0.36)20.64log(0.64)2=36100log(36100)264100log(64100)2=36100log(925)264100log(64100)2=925log(925)264100log(64100)2=925log(925)264100log(1625)2=925log(925)21625log(1625)2=1625log(1625)2+925log(925)2\begin{aligned}0.36 {\log\left( 0.36 \right)}^{2} - 0.64 {\log\left( 0.64 \right)}^{2}&=\frac{36}{100} \cdot \log{\left(\frac{36}{100} \right)}^{2} - \frac{64}{100} \cdot \log{\left(\frac{64}{100} \right)}^{2}\\&=\frac{36}{100} \cdot \log{\left(\frac{9}{25} \right)}^{2} - \frac{64}{100} \cdot \log{\left(\frac{64}{100} \right)}^{2}\\&=\frac{9}{25} \cdot \log{\left(\frac{9}{25} \right)}^{2} - \frac{64}{100} \cdot \log{\left(\frac{64}{100} \right)}^{2}\\&=\frac{9}{25} \cdot \log{\left(\frac{9}{25} \right)}^{2} - \frac{64}{100} \cdot \log{\left(\frac{16}{25} \right)}^{2}\\&=\frac{9}{25} \cdot \log{\left(\frac{9}{25} \right)}^{2} - \frac{16}{25} \cdot \log{\left(\frac{16}{25} \right)}^{2}\\&=- \frac{16}{25} \cdot \log{\left(\frac{16}{25} \right)}^{2} + \frac{9}{25} \cdot \log{\left(\frac{9}{25} \right)}^{2}\end{aligned}