(29^1.83)/(29^1.83)+(28^1.83)

asked by guest
on Nov 24, 2024 at 12:25 am



You asked:

Evaluate the expression: \(\frac{{29}^{1.83}}{{29}^{1.83}} + {28}^{1.83}\)

MathBot Answer:

\[\frac{{29}^{1.83}}{{29}^{1.83}} + {28}^{1.83} = 1 + 56 \cdot 2^{\frac{33}{50}} \cdot 7^{\frac{83}{100}} \approx 445.93769165977536323977516197275108\]


\[\begin{aligned}\frac{{29}^{1.83}}{{29}^{1.83}} + {28}^{1.83}& = 29^{1 + \frac{83}{100}} \cdot \frac{1}{29^{1 + \frac{83}{100}}} + 28^{1 + \frac{83}{100}}\\& = 29^{\frac{183}{100}} \cdot \frac{1}{29^{1 + \frac{83}{100}}} + 28^{1 + \frac{83}{100}}\\& = 29 \cdot 29^{\frac{83}{100}} \cdot \frac{1}{29^{1 + \frac{83}{100}}} + 28^{1 + \frac{83}{100}}\\& = 29 \cdot 29^{\frac{83}{100}} \cdot \frac{1}{29^{\frac{183}{100}}} + 28^{1 + \frac{83}{100}}\\& = 29 \cdot 29^{\frac{83}{100}} \cdot \frac{1}{29 \cdot 29^{\frac{83}{100}}} + 28^{1 + \frac{83}{100}}\\& = 1 + 28^{1 + \frac{83}{100}}\\& = 1 + 28^{\frac{183}{100}}\\& = 1 + 56 \cdot 2^{\frac{33}{50}} \cdot 7^{\frac{83}{100}}\end{aligned}\]