find center and radius for the following circle equation: 9x²+9y²-12x+24y-16=0

asked by guest
on Apr 04, 2025 at 4:45 pm



You asked:

Find the center and the radius of 9x2+9y212x+24y16=09 {x}^{2} + 9 {y}^{2} - 12 x + 24 y - 16 = 0

MathBot Answer:

The center of the circle 9x212x+9y2+24y16=09 x^{2} - 12 x + 9 y^{2} + 24 y - 16 = 0 is at (23, 43)\left( \frac{2}{3}, \ - \frac{4}{3}\right).


The standard form of a circle is (xh)2+(yk)2=r2(x-h)^2+(y-k)^2=r^2 where (h,k)(h, k) is the center and rr is the radius. Convert the equation into standard form by completing the square for both xx-dependent terms and yy-dependent terms.9x212x+9y2+24y16=09x212x+9y2+24y=169(x24x3)+9(y2+8y3)=169(x24x3+49)+9(y2+8y3+169)=16+949+91699(x23)2+9(y+43)2=4+16+169(x23)2+9(y+43)2=36(x23)2+(y+43)2=369(x23)2+(y+43)2=4\begin{aligned}9 x^{2} - 12 x + 9 y^{2} + 24 y - 16 &= 0\\9 x^{2} - 12 x + 9 y^{2} + 24 y &= 16\\9 \left(x^{2} - \frac{4 x}{3}\right) + 9 \left(y^{2} + \frac{8 y}{3}\right) &= 16\\9 \left(x^{2} - \frac{4 x}{3} + \frac{4}{9}\right) + 9 \left(y^{2} + \frac{8 y}{3} + \frac{16}{9}\right) &= 16 + 9 \cdot \frac{4}{9} + 9 \cdot \frac{16}{9}\\9 \left(x - \frac{2}{3}\right)^{2} + 9 \left(y + \frac{4}{3}\right)^{2} &= 4 + 16 + 16\\9 \left(x - \frac{2}{3}\right)^{2} + 9 \left(y + \frac{4}{3}\right)^{2} &= 36\\\left(x - \frac{2}{3}\right)^{2} + \left(y + \frac{4}{3}\right)^{2} &= \frac{36}{9}\\\left(x - \frac{2}{3}\right)^{2} + \left(y + \frac{4}{3}\right)^{2} &= 4\end{aligned}The center is at (h,k)(h, k) or (23, 43)\left( \frac{2}{3}, \ - \frac{4}{3}\right).


The radius of the circle 9x212x+9y2+24y16=09 x^{2} - 12 x + 9 y^{2} + 24 y - 16 = 0 is 22.


The standard form of a circle is (xh)2+(yk)2=r2(x-h)^2+(y-k)^2=r^2 where (h,k)(h, k) is the center and rr is the radius. Convert the equation into standard form by completing the square for both xx-dependent terms and yy-dependent terms.9x212x+9y2+24y16=09x212x+9y2+24y=169(x24x3)+9(y2+8y3)=169(x24x3+49)+9(y2+8y3+169)=16+949+91699(x23)2+9(y+43)2=4+16+169(x23)2+9(y+43)2=36(x23)2+(y+43)2=369(x23)2+(y+43)2=4\begin{aligned}9 x^{2} - 12 x + 9 y^{2} + 24 y - 16 &= 0\\9 x^{2} - 12 x + 9 y^{2} + 24 y &= 16\\9 \left(x^{2} - \frac{4 x}{3}\right) + 9 \left(y^{2} + \frac{8 y}{3}\right) &= 16\\9 \left(x^{2} - \frac{4 x}{3} + \frac{4}{9}\right) + 9 \left(y^{2} + \frac{8 y}{3} + \frac{16}{9}\right) &= 16 + 9 \cdot \frac{4}{9} + 9 \cdot \frac{16}{9}\\9 \left(x - \frac{2}{3}\right)^{2} + 9 \left(y + \frac{4}{3}\right)^{2} &= 4 + 16 + 16\\9 \left(x - \frac{2}{3}\right)^{2} + 9 \left(y + \frac{4}{3}\right)^{2} &= 36\\\left(x - \frac{2}{3}\right)^{2} + \left(y + \frac{4}{3}\right)^{2} &= \frac{36}{9}\\\left(x - \frac{2}{3}\right)^{2} + \left(y + \frac{4}{3}\right)^{2} &= 4\end{aligned}The radius is rr, or 4\sqrt{4}. 4=±2\sqrt{4} = \pm 2, and a radius is always positive, so the radius is 22.

    • Axis Limits
    • min x
    • max x
    • min y
    • max y
  • Update Axis Limits
Close Controls