(1/3)^-2+(1/4)^-2+(1/2)^-2
You asked:
Evaluate the expression: \({\left( \frac{1}{3} \right)}^{-2} + {\left( \frac{1}{4} \right)}^{-2} + {\left( \frac{1}{2} \right)}^{-2}\)
MathBot Answer:
\[{\left( \frac{1}{3} \right)}^{-2} + {\left( \frac{1}{4} \right)}^{-2} + {\left( \frac{1}{2} \right)}^{-2} = 29\]
\[\begin{aligned}{\left( \frac{1}{3} \right)}^{-2} + {\left( \frac{1}{4} \right)}^{-2} + {\left( \frac{1}{2} \right)}^{-2}& = \frac{1}{(\frac{1}{3})^{2}} + \frac{1}{(\frac{1}{4})^{2}} + \frac{1}{(\frac{1}{2})^{2}}\\& = 9 + \frac{1}{(\frac{1}{4})^{2}} + \frac{1}{(\frac{1}{2})^{2}}\\& = 9 + 16 + \frac{1}{(\frac{1}{2})^{2}}\\& = 9 + 16 + 4\\& = 25 + 4\\& = 29\end{aligned}\]