inverse matrix of inv {{1, 2, 3}, {4, 5, 7}, {8, 9, 12}}

asked by guest
on Nov 27, 2024 at 12:46 am



MathBot Answer:

If the determinant is non-zero, that is if n3v3i0- n^{3} v^{3} i \ne 0, then the inverse is: [3inv3invinv8inv12inv5inv4inv7inv3inv] \left[\begin{matrix}\frac{3 i}{n v} & - \frac{3 i}{n v} & \frac{i}{n v}\\- \frac{8 i}{n v} & \frac{12 i}{n v} & - \frac{5 i}{n v}\\\frac{4 i}{n v} & - \frac{7 i}{n v} & \frac{3 i}{n v}\end{matrix}\right] The inverse of a square matrix AA, is the matrix A1A^{-1} such that: A1A=AA1=I A^{-1} A = A A^{-1} = I where II is the identity matrix.