(¬p ∨ q) ∧ (p ∧ (p ∧ q)) ≡ p ∧ q

asked by guest
on Mar 29, 2025 at 7:46 pm



MathBot Answer:

Logic Expression
Symbol: ((¬pq)ppq)(pq)\left(\left(\neg p \vee q\right) \wedge p \wedge p \wedge q\right) \leftrightarrow \left(p \wedge q\right)
Text: ((not p or q) and p and p and q) if and only if (p and q)\left(\left(\text{not } p \text{ or } q\right) \text{ and } p \text{ and } p \text{ and } q\right) \text{ if and only if } \left(p \text{ and } q\right)


Classification tautology


Truth Table

Legend

ppqq¬p\neg p¬pq\neg p \vee q(¬pq)ppq\left(\neg p \vee q\right) \wedge p \wedge p \wedge qpqp \wedge q((¬pq)ppq)(pq)\left(\left(\neg p \vee q\right) \wedge p \wedge p \wedge q\right) \leftrightarrow \left(p \wedge q\right)
1101111
1000001
0111001
0011001
T/F

Simplification((¬pq)ppq)(pq)((¬pq)pq)(pq)Idempotent Law((¬pq)qp)(pq)Commutative Law(qp)(pq)Absorption Law(qp)(qp)Commutative LawTrueBiconditional Simplification\begin{gathered} \left(\left(\neg p \vee q\right) \wedge p \wedge p \wedge q\right) \leftrightarrow \left(p \wedge q\right) & \equiv & \left(\left(\neg p \vee q\right) \wedge p \wedge q\right) \leftrightarrow \left(p \wedge q\right) & \text{Idempotent Law} \\ & \equiv & \left(\left(\neg p \vee q\right) \wedge q \wedge p\right) \leftrightarrow \left(p \wedge q\right) & \text{Commutative Law} \\ & \equiv & \left(q \wedge p\right) \leftrightarrow \left(p \wedge q\right) & \text{Absorption Law} \\ & \equiv & \left(q \wedge p\right) \leftrightarrow \left(q \wedge p\right) & \text{Commutative Law} \\ & \equiv & \text{True} & \text{Biconditional Simplification} \end{gathered} Note: Solution may not be as simplified as possible.


Conjunctive Normal FormTrue\text{True}


Note 1: These equivalences and tautologies are used to generate the above steps.
Note 2: Two logical statements are logically equivalent if they always produce the same truth value. Consequently, p ≡ q is same as saying p ↔ q is a tautology. EquivalenceAbsorption Lawp(pq)pp(pq)pBiconditional Equivalencepq(p¬q)(¬pq)pq(pq)(¬p¬q)Biconditional SimplificationppTruepTruepp¬pFalsepFalse¬pComplement Lawp¬pFalsep¬pTrueConditional Equivalencepq¬pqConditional SimplificationppTruepTrueTruepFalse¬pp¬p¬pTrueppFalsepTrue¬pppConsensus Law(pq)(¬pr)(qr)(pq)(¬pr)(pq)(¬pr)(qr)(pq)(¬pr)De Morgan’s Law¬(pq)¬p¬q¬(pq)¬p¬qDistributive Lawp(qr)(pq)(pr)p(qr)(pq)(pr)(pq)(rs)(pr)(ps)(qr)(qs)(pq)(rs)(pr)(ps)(qr)(qs)Domination LawpTrueTruepFalseFalseDouble Negation Law¬(¬p)pIdempotent LawppppppIdentity LawpTrueppFalsepNANDpq¬(pq)Negation Law¬TrueFalse¬FalseTrueNORpq¬(pq)Negation of Biconditional Equivalence¬(pq)(pq)(¬p¬q)¬(pq)(p¬q)(¬pq)Negation of Conditional Equivalence¬(pq)p¬qRedundancy Law (1)(pq)(p¬q)p(pq)(p¬q)pRedundancy Law (2)p(¬pq)pqp(¬pq)pqXORpq(pq)(¬p¬q)pq(p¬q)(¬pq)XOR SimplificationppFalsepTrue¬pp¬pTruepFalsepXNORpq¬(pq)\begin{array}{c|c}\textbf{Equivalence} \\ \hline \text{Absorption Law} & \begin{gathered} p \wedge \left(p \vee q\right) \equiv p \\ p \vee \left(p \wedge q\right) \equiv p \end{gathered} \\ \hline \text{Biconditional Equivalence} & \begin{gathered} p \leftrightarrow q \equiv \left(p \vee \neg q\right) \wedge \left(\neg p \vee q\right) \\ p \leftrightarrow q \equiv \left(p \wedge q\right) \vee \left(\neg p \wedge \neg q\right) \end{gathered} \\ \hline \text{Biconditional Simplification} & \begin{gathered} p \leftrightarrow p \equiv \text{True} & p \leftrightarrow \text{True} \equiv p \\ p \leftrightarrow \neg p \equiv \text{False} & p \leftrightarrow \text{False} \equiv \neg p \end{gathered} \\ \hline \text{Complement Law} & \begin{gathered} p \wedge \neg p \equiv \text{False} \\ p \vee \neg p \equiv \text{True} \end{gathered} \\ \hline \text{Conditional Equivalence} & p \rightarrow q \equiv \neg p \vee q \\ \hline \text{Conditional Simplification} & \begin{gathered} p \rightarrow p \equiv \text{True} & p \rightarrow \text{True} \equiv \text{True} & p \rightarrow \text{False} \equiv \neg p \\ p \rightarrow \neg p \equiv \neg p & \text{True} \rightarrow p \equiv p & \text{False} \rightarrow p \equiv \text{True} \\ \neg p \rightarrow p \equiv p\end{gathered} \\ \hline \text{Consensus Law} & \begin{gathered} \left(p \vee q\right) \wedge \left(\neg p \vee r\right) \wedge \left(q \vee r\right) \equiv \left(p \vee q\right) \wedge \left(\neg p \vee r\right) \\ \left(p \wedge q\right) \vee \left(\neg p \wedge r\right) \vee \left(q \wedge r\right) \equiv \left(p \wedge q\right) \vee \left(\neg p \wedge r\right) \end{gathered} \\ \hline \text{De Morgan's Law} & \begin{gathered} \neg \left(p \wedge q\right) \equiv \neg p \vee \neg q \\ \neg \left(p \vee q\right) \equiv \neg p \wedge \neg q \end{gathered} \\ \hline \text{Distributive Law} & \begin{gathered} p \wedge \left(q \vee r\right) \equiv \left(p \wedge q\right) \vee \left(p \wedge r\right) \\ p \vee \left(q \wedge r\right) \equiv \left(p \vee q\right) \wedge \left(p \vee r\right) \\ \left(p \vee q\right) \wedge \left(r \vee s\right) \equiv \left(p \wedge r\right) \vee \left(p \wedge s\right) \vee \left(q \wedge r\right) \vee \left(q \wedge s\right) \\ \left(p \wedge q\right) \vee \left(r \wedge s\right) \equiv \left(p \vee r\right) \wedge \left(p \vee s\right) \wedge \left(q \vee r\right) \wedge \left(q \vee s\right) \end{gathered} \\ \hline \text{Domination Law} & \begin{gathered} p \vee \text{True} \equiv \text{True} \\ p \wedge \text{False} \equiv \text{False} \end{gathered} \\ \hline \text{Double Negation Law} & \neg \left(\neg p\right) \equiv p \\ \hline \text{Idempotent Law} & \begin{gathered} p \wedge p \equiv p \\ p \vee p \equiv p \end{gathered} \\ \hline \text{Identity Law} & \begin{gathered} p \wedge \text{True} \equiv p \\ p \vee \text{False} \equiv p \end{gathered} \\ \hline \text{NAND} & p \uparrow q \equiv \neg \left(p \wedge q\right) \\ \hline \text{Negation Law} & \begin{gathered} \neg \text{True} \equiv \text{False} \\ \neg \text{False} \equiv \text{True} \end{gathered} \\ \hline \text{NOR} & p \downarrow q \equiv \neg \left(p \vee q\right) \\ \hline \text{Negation of Biconditional Equivalence} & \begin{gathered} \neg \left(p \leftrightarrow q\right) \equiv \left(p \vee q\right) \wedge \left(\neg p \vee \neg q\right) \\ \neg \left(p \leftrightarrow q\right) \equiv \left(p \wedge \neg q\right) \vee \left(\neg p \wedge q\right) \end{gathered} \\ \hline \text{Negation of Conditional Equivalence} & \neg \left(p \rightarrow q\right) \equiv p \wedge \neg q \\ \hline \text{Redundancy Law (1)} & \begin{gathered} \left(p \vee q\right) \wedge \left(p \vee \neg q\right) \equiv p \\ \left(p \wedge q\right) \vee \left(p \wedge \neg q\right) \equiv p \end{gathered} \\ \hline \text{Redundancy Law (2)} & \begin{gathered} p \wedge \left(\neg p \vee q\right) \equiv p \wedge q \\ p \vee \left(\neg p \wedge q\right) \equiv p \vee q \end{gathered} \\ \hline \text{XOR} & \begin{gathered} p \oplus q \equiv \left(p \vee q\right) \wedge \left(\neg p \vee \neg q\right) \\ p \oplus q \equiv \left(p \wedge \neg q\right) \vee \left(\neg p \wedge q\right) \end{gathered} \\ \hline \text{XOR Simplification} & \begin{gathered} p \oplus p \equiv \text{False} & p \oplus \text{True} \equiv \neg p \\ p \oplus \neg p \equiv \text{True} & p \oplus \text{False} \equiv p \end{gathered} \\ \hline \text{XNOR} & p \odot q \equiv \neg \left(p \oplus q\right) \end{array} TautologyConjunctive Simplification(pq)p(pq)qContradiction¬(p¬p)Contrapositive(pq)(¬q¬p)Disjunctive Additionp(pq)q(pq)Disjunctive Syllogism((pq)¬q)p((pq)¬p)qHypothetical Syllogism((pq)(qr))(pr)Modus Ponens(p(pq))qModus Tollens(¬q(pq))¬p\begin{array}{c|c}\textbf{Tautology} \\ \hline \text{Conjunctive Simplification} & \begin{gathered} \left(p \wedge q\right) \rightarrow p \\ \left(p \wedge q\right) \rightarrow q \end{gathered} \\ \hline \text{Contradiction} & \neg \left(p \wedge \neg p\right) \\ \hline \text{Contrapositive} & \left(p \rightarrow q\right) \leftrightarrow \left(\neg q \rightarrow \neg p\right) \\ \hline \text{Disjunctive Addition} & \begin{gathered} p \rightarrow \left(p \vee q\right) \\ q \rightarrow \left(p \vee q\right) \end{gathered} \\ \hline \text{Disjunctive Syllogism} & \begin{gathered} \left(\left(p \vee q\right) \wedge \neg q\right) \rightarrow p \\ \left(\left(p \vee q\right) \wedge \neg p\right) \rightarrow q \end{gathered} \\ \hline \text{Hypothetical Syllogism} & \left(\left(p \rightarrow q\right) \wedge \left(q \rightarrow r\right)\right) \rightarrow \left(p \rightarrow r\right) \\ \hline \text{Modus Ponens} & \left(p \wedge \left(p \rightarrow q\right)\right) \rightarrow q \\ \hline \text{Modus Tollens} & \left(\neg q \wedge \left(p \rightarrow q\right)\right) \rightarrow \neg p \end{array}