(√a - √x)^4 / √ax

asked by guest
on Nov 15, 2024 at 4:06 am



You asked:

Evaluate the expression: (ax)4ax\frac{{\left( \sqrt{a} - \sqrt{x} \right)}^{4}}{\sqrt{a} \cdot x}

MathBot Answer:

Evaluated



(ax)4ax=(ax)4ax\displaystyle \frac{{\left( \sqrt{a} - \sqrt{x} \right)}^{4}}{\sqrt{a} \cdot x} = \frac{\left(\sqrt{a} - \sqrt{x}\right)^{4}}{\sqrt{a} x}


Expanded

(ax)4ax=a32x+6a4x4ax+xa\frac{{\left( \sqrt{a} - \sqrt{x} \right)}^{4}}{\sqrt{a} \cdot x} = \frac{a^{\frac{3}{2}}}{x} + 6 \sqrt{a} - 4 \sqrt{x} - \frac{4 a}{\sqrt{x}} + \frac{x}{\sqrt{a}}