(√a - √x)^4 / √ax
You asked:
Evaluate the expression: \(\frac{{\left( \sqrt{a} - \sqrt{x} \right)}^{4}}{\sqrt{a} \cdot x}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{{\left( \sqrt{a} - \sqrt{x} \right)}^{4}}{\sqrt{a} \cdot x} = \frac{\left(\sqrt{a} - \sqrt{x}\right)^{4}}{\sqrt{a} x} \)
Expanded
\[\frac{{\left( \sqrt{a} - \sqrt{x} \right)}^{4}}{\sqrt{a} \cdot x} = \frac{a^{\frac{3}{2}}}{x} + 6 \sqrt{a} - 4 \sqrt{x} - \frac{4 a}{\sqrt{x}} + \frac{x}{\sqrt{a}}\]