2/3(3x-2)-3/4(2x-2)
You asked:
Evaluate the expression: \(\frac{2}{3 \cdot \left(3 x - 2\right)} - \frac{3}{4 \cdot \left(2 x - 2\right)}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{2}{3 \cdot \left(3 x - 2\right)} - \frac{3}{4 \cdot \left(2 x - 2\right)} = \frac{2}{9 x - 6} - \frac{3}{8 x - 8} \)
Expanded
\[\frac{2}{3 \cdot \left(3 x - 2\right)} - \frac{3}{4 \cdot \left(2 x - 2\right)} = \frac{2}{9 x - 6} - \frac{3}{8 x - 8}\]
Factored
\[\frac{2}{3 \cdot \left(3 x - 2\right)} - \frac{3}{4 \cdot \left(2 x - 2\right)} = - \frac{11 x - 2}{24 \cdot \left(3 x - 2\right) \left(x - 1\right)}\]