(m-1)*(n-1)*(n-m)
You asked:
Evaluate the expression: \(\left(m - 1\right) \cdot \left(n - 1\right) \cdot \left(n - m\right)\)
MathBot Answer:
Evaluated
\(\displaystyle \left(m - 1\right) \cdot \left(n - 1\right) \cdot \left(n - m\right) = \left(- m + n\right) \left(m - 1\right) \left(n - 1\right) \)
Expanded
\[\left(m - 1\right) \cdot \left(n - 1\right) \cdot \left(n - m\right) = - m^{2} n + m^{2} + n^{2} m - m - n^{2} + n\]
Factored
\[\left(m - 1\right) \cdot \left(n - 1\right) \cdot \left(n - m\right) = - \left(m - 1\right) \left(m - n\right) \left(n - 1\right)\]