(-14/3) + (x^2)/2 + (5/24)*x^3 = 0
You asked:
MathBot Answer:
The 3 solutions to the equation are: \[\begin{aligned}x &= - \frac{4}{5} + 2 \sqrt[3]{\frac{167}{125} + \frac{\sqrt{1113}}{25}} + \frac{8}{25 \sqrt[3]{\frac{167}{125} + \frac{\sqrt{1113}}{25}}} \approx 2.2054121\\x &= - \sqrt[3]{\frac{\sqrt{1113}}{25} + \frac{167}{125}} - \frac{4}{5} - \frac{4}{25 \sqrt[3]{\frac{\sqrt{1113}}{25} + \frac{167}{125}}} + i \left(- \frac{4 \sqrt{3}}{25 \sqrt[3]{\frac{\sqrt{1113}}{25} + \frac{167}{125}}} + \sqrt{3} \sqrt[3]{\frac{\sqrt{1113}}{25} + \frac{167}{125}}\right) \approx -2.3027061 + 2.203265 i\\x &= - \sqrt[3]{\frac{\sqrt{1113}}{25} + \frac{167}{125}} - \frac{4}{5} - \frac{4}{25 \sqrt[3]{\frac{\sqrt{1113}}{25} + \frac{167}{125}}} + i \left(- \sqrt{3} \sqrt[3]{\frac{\sqrt{1113}}{25} + \frac{167}{125}} + \frac{4 \sqrt{3}}{25 \sqrt[3]{\frac{\sqrt{1113}}{25} + \frac{167}{125}}}\right) \approx -2.3027061 -2.203265 i\end{aligned}\]
\(i\) is the imaginary unit, defined as \(i^2 = -1\).