x^35=2

asked by guest
on Dec 26, 2024 at 1:26 pm



You asked:

Solve the equation x35=2{x}^{35} = 2 for the variable xx.

MathBot Answer:

The solutions are given by the formula: x=235cos(2πk35)+235sin(2πk35)ix = \sqrt[35]{2} \cos{\left(\frac{2 \pi k}{35} \right)} + \sqrt[35]{2} \sin{\left(\frac{2 \pi k}{35} \right)} i where kk is an integer in 0k<350 \le k < 35.

There is 11 real solution.

There are 3434 solutions with nonzero imaginary part.


Real solutions: x=2351.0200016\begin{aligned}x &= \sqrt[35]{2} \\&\approx 1.0200016\end{aligned}


Solutions with nonzero imaginary part (99 of 3434 displayed): x=235cos(2π35)+235isin(2π35)1.0036098+0.18212832ix=235cos(4π35)+235isin(4π35)0.95496107+0.35840289ix=235cos(6π35)+235isin(6π35)0.87561915+0.52315809ix=235cos(8π35)+235isin(8π35)0.76813411+0.67109856ix=235cos(2π7)+235isin(2π7)0.6359606+0.79746937ix=235cos(12π35)+235isin(12π35)0.4833468+0.89820886ix=235(14+54)+235i58+580.31519783+0.97007918ix=235cos(16π35)+235isin(16π35)0.13691815+1.0107704ix=235cos(17π35)+235isin(17π35)0.045762199+1.0189745i\begin{aligned}x &= \sqrt[35]{2} \cos{\left(\frac{2 \pi}{35} \right)} + \sqrt[35]{2} i \sin{\left(\frac{2 \pi}{35} \right)} \\&\approx 1.0036098 + 0.18212832 i\\x &= \sqrt[35]{2} \cos{\left(\frac{4 \pi}{35} \right)} + \sqrt[35]{2} i \sin{\left(\frac{4 \pi}{35} \right)} \\&\approx 0.95496107 + 0.35840289 i\\x &= \sqrt[35]{2} \cos{\left(\frac{6 \pi}{35} \right)} + \sqrt[35]{2} i \sin{\left(\frac{6 \pi}{35} \right)} \\&\approx 0.87561915 + 0.52315809 i\\x &= \sqrt[35]{2} \cos{\left(\frac{8 \pi}{35} \right)} + \sqrt[35]{2} i \sin{\left(\frac{8 \pi}{35} \right)} \\&\approx 0.76813411 + 0.67109856 i\\x &= \sqrt[35]{2} \cos{\left(\frac{2 \pi}{7} \right)} + \sqrt[35]{2} i \sin{\left(\frac{2 \pi}{7} \right)} \\&\approx 0.6359606 + 0.79746937 i\\x &= \sqrt[35]{2} \cos{\left(\frac{12 \pi}{35} \right)} + \sqrt[35]{2} i \sin{\left(\frac{12 \pi}{35} \right)} \\&\approx 0.4833468 + 0.89820886 i\\x &= \sqrt[35]{2} \left(- \frac{1}{4} + \frac{\sqrt{5}}{4}\right) + \sqrt[35]{2} i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} \\&\approx 0.31519783 + 0.97007918 i\\x &= \sqrt[35]{2} \cos{\left(\frac{16 \pi}{35} \right)} + \sqrt[35]{2} i \sin{\left(\frac{16 \pi}{35} \right)} \\&\approx 0.13691815 + 1.0107704 i\\x &= - \sqrt[35]{2} \cos{\left(\frac{17 \pi}{35} \right)} + \sqrt[35]{2} i \sin{\left(\frac{17 \pi}{35} \right)} \\&\approx -0.045762199 + 1.0189745 i\end{aligned}


ii is the imaginary unit, defined as i2=1i^2 = -1.