(8.76*10^3)/(7.65*10^-77)(2.54*10^5)

asked by guest
on Nov 15, 2024 at 7:24 pm



You asked:

Evaluate the expression: \(\frac{8.76 \cdot {10}^{3}}{7.65 \cdot {10}^{-77} \cdot 2.54 \cdot {10}^{5}}\)

MathBot Answer:

\[\frac{8.76 \cdot {10}^{3}}{7.65 \cdot {10}^{-77} \cdot 2.54 \cdot {10}^{5}} = \frac{2920000000000000000000000000000000000000000000000000000000000000000000000000000}{6477} \approx 450825999691215068704647213215995059441099274355411455920951057588389686583.29473521692141423498533271576347\]


\[\begin{aligned}\frac{8.76 \cdot {10}^{3}}{7.65 \cdot {10}^{-77} \cdot 2.54 \cdot {10}^{5}}& = \left(8 + \frac{76}{100}\right) \cdot 10^{3} \cdot \frac{1}{\left(7 + \frac{65}{100}\right) \cdot \frac{1}{10^{77}} \cdot \left(2 + \frac{54}{100}\right) \cdot 10^{5}}\\& = \left(8 + \frac{19}{25}\right) \cdot 10^{3} \cdot \frac{1}{\left(7 + \frac{65}{100}\right) \cdot \frac{1}{10^{77}} \cdot \left(2 + \frac{54}{100}\right) \cdot 10^{5}}\\& = \frac{219}{25} \cdot 10^{3} \cdot \frac{1}{\left(7 + \frac{65}{100}\right) \cdot \frac{1}{10^{77}} \cdot \left(2 + \frac{54}{100}\right) \cdot 10^{5}}\\& = \frac{219}{25} \cdot 1000 \cdot \frac{1}{\left(7 + \frac{65}{100}\right) \cdot \frac{1}{10^{77}} \cdot \left(2 + \frac{54}{100}\right) \cdot 10^{5}}\\& = \frac{219}{25} \cdot 1000 \cdot \frac{1}{\left(7 + \frac{13}{20}\right) \cdot \frac{1}{10^{77}} \cdot \left(2 + \frac{54}{100}\right) \cdot 10^{5}}\\& = \frac{219}{25} \cdot 1000 \cdot \frac{1}{\frac{153}{20} \cdot \frac{1}{10^{77}} \cdot \left(2 + \frac{54}{100}\right) \cdot 10^{5}}\\& = \frac{219}{25} \cdot 1000 \cdot \frac{1}{\frac{153}{20} \cdot \frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000} \cdot \left(2 + \frac{54}{100}\right) \cdot 10^{5}}\\& = \frac{219}{25} \cdot 1000 \cdot \frac{1}{\frac{153}{20} \cdot \frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000} \cdot \left(2 + \frac{27}{50}\right) \cdot 10^{5}}\\& = \frac{219}{25} \cdot 1000 \cdot \frac{1}{\frac{153}{20} \cdot \frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000} \cdot \frac{127}{50} \cdot 10^{5}}\\& = \frac{219}{25} \cdot 1000 \cdot \frac{1}{\frac{153}{20} \cdot \frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000} \cdot \frac{127}{50} \cdot 100000}\\& = \frac{219}{25} \cdot 1000 \cdot \frac{1}{\frac{153}{2000000000000000000000000000000000000000000000000000000000000000000000000000000} \cdot \frac{127}{50} \cdot 100000}\\& = \frac{219}{25} \cdot 1000 \cdot \frac{1}{\frac{19431}{100000000000000000000000000000000000000000000000000000000000000000000000000000000} \cdot 100000}\\& = \frac{219}{25} \cdot 1000 \cdot \frac{1}{\frac{19431}{1000000000000000000000000000000000000000000000000000000000000000000000000000}}\\& = \frac{219}{25} \cdot \frac{1000000000000000000000000000000000000000000000000000000000000000000000000000000}{19431}\\& = \frac{2920000000000000000000000000000000000000000000000000000000000000000000000000000}{6477}\end{aligned}\]