Given f(x) = x^2 – 2x + 1 and g(x) = x – 1, find f(x)/g(x)
You asked:
Given the following function definitions: \[\begin{aligned}f\left( x \right) &= {x}^{2} - 2 x + 1\\ g\left( x \right) &= x - 1\end{aligned}\] Evaluate \(\frac{f\left( x \right)}{g\left( x \right)}\).
MathBot Answer:
$$\begin{aligned}\frac{f\left( x \right)}{g\left( x \right)}&=x - 1\end{aligned}$$
$$\begin{aligned}\frac{f\left( x \right)}{g\left( x \right)}&=\frac{1 - 2 x + x^{2}}{-1 + x}\\\frac{f\left( x \right)}{g\left( x \right)}&=x - 1\\\end{aligned}$$