$153,8^{2.2}$

asked by guest
on Nov 19, 2024 at 3:22 pm



MathBot Answer:

The sum of \(153\) and \({8}^{2.2}\) is:

\[\begin{aligned}&=\left(153\right) + \left({8}^{2.2}\right) \\\\ &= 8^{2 \cdot \frac{1}{10} + 2} + 153 \\\\ &= 64 \cdot 2^{\frac{3}{5}} + 153 \\\\\end{aligned}\]


The difference of \(153\) and \({8}^{2.2}\) is:

\[\begin{aligned}&=\left(153\right) - \left({8}^{2.2}\right) \\\\ &= 153 - 8^{2 \cdot \frac{1}{10} + 2} \\\\ &= 153 - 64 \cdot 2^{\frac{3}{5}} \\\\\end{aligned}\]


The product of \(153\) and \({8}^{2.2}\) is:

\[\begin{aligned}&=\left(153\right) \cdot \left({8}^{2.2}\right) \\\\ &= 153 \cdot 8^{2 \cdot \frac{1}{10} + 2} \\\\ &= 9792 \cdot 2^{\frac{3}{5}} \\\\\end{aligned}\]


The quotient of \(153\) and \({8}^{2.2}\) is:

\[\begin{aligned}&= \frac{\left(153\right)}{\left({8}^{2.2}\right)} \\\\ &= \frac{153 \cdot 2^{\frac{2}{5}}}{128} \\\\\end{aligned}\]