-1/8.55E-4ln[-ln(0.3046)]=
You asked:
Evaluate the expression: \(\frac{-1}{8.55 E} - 4 \ln\left( -\ln\left( 0.3046 \right) \right)\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{-1}{8.55 E} - 4 \ln\left( -\ln\left( 0.3046 \right) \right) = - 4 \log{\left(- \log{\left(\frac{1523}{5000} \right)} \right)} - \frac{20}{171 E} \)
Expanded
\[\frac{-1}{8.55 E} - 4 \ln\left( -\ln\left( 0.3046 \right) \right) = - 4 \log{\left(- \log{\left(3046 \right)} + 4 \log{\left(10 \right)} \right)} - \frac{20}{171 E}\]
Factored
\[\frac{-1}{8.55 E} - 4 \ln\left( -\ln\left( 0.3046 \right) \right) = - \frac{4 \cdot \left(171 E \log{\left(- \log{\left(3046 \right)} + 4 \log{\left(10 \right)} \right)} + 5\right)}{171 E}\]