s^3 + 6s^2 + 15s + 12 = 0

asked by guest
on Apr 01, 2025 at 10:26 am



You asked:

Solve the equation s3+6s2+15s+12=0{s}^{3} + 6 {s}^{2} + 15 s + 12 = 0 for the variable ss.

MathBot Answer:

The 3 solutions to the equation are: s=2+1+2311+231.4039284s=21+232+121+23+i(321+23+31+232)2.2980358+1.8073395is=21+232+121+23+i(31+232321+23)2.29803581.8073395i\begin{aligned}s &= -2 + \sqrt[3]{1 + \sqrt{2}} - \frac{1}{\sqrt[3]{1 + \sqrt{2}}} \approx -1.4039284\\s &= -2 - \frac{\sqrt[3]{1 + \sqrt{2}}}{2} + \frac{1}{2 \sqrt[3]{1 + \sqrt{2}}} + i \left(\frac{\sqrt{3}}{2 \sqrt[3]{1 + \sqrt{2}}} + \frac{\sqrt{3} \sqrt[3]{1 + \sqrt{2}}}{2}\right) \approx -2.2980358 + 1.8073395 i\\s &= -2 - \frac{\sqrt[3]{1 + \sqrt{2}}}{2} + \frac{1}{2 \sqrt[3]{1 + \sqrt{2}}} + i \left(- \frac{\sqrt{3} \sqrt[3]{1 + \sqrt{2}}}{2} - \frac{\sqrt{3}}{2 \sqrt[3]{1 + \sqrt{2}}}\right) \approx -2.2980358 -1.8073395 i\end{aligned}


ii is the imaginary unit, defined as i2=1i^2 = -1.