$\frac{(x-5)^2-12}{(x-5)^2+4}$
You asked:
Evaluate the expression: \(\frac{{\left( x - 5 \right)}^{2} - 12}{{\left( x - 5 \right)}^{2} + 4}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{{\left( x - 5 \right)}^{2} - 12}{{\left( x - 5 \right)}^{2} + 4} = \frac{\left(x - 5\right)^{2} - 12}{\left(x - 5\right)^{2} + 4} \)
Expanded
\[\frac{{\left( x - 5 \right)}^{2} - 12}{{\left( x - 5 \right)}^{2} + 4} = \frac{x^{2}}{x^{2} - 10 x + 29} - \frac{10 x}{x^{2} - 10 x + 29} + \frac{13}{x^{2} - 10 x + 29}\]
Factored
\[\frac{{\left( x - 5 \right)}^{2} - 12}{{\left( x - 5 \right)}^{2} + 4} = \frac{x^{2} - 10 x + 13}{x^{2} - 10 x + 29}\]