e^(-2)*-2
You asked:
Evaluate the expression: \({e}^{-2} \cdot -2\)
MathBot Answer:
\[{e}^{-2} \cdot -2 = - \frac{2}{e^{2}} \approx -0.27067056647322538378799898994497\]
\[\begin{aligned}{e}^{-2} \cdot -2& = \frac{1}{e^{2}} \cdot -2\\& = e^{-2} \cdot -2\\& = -2 \cdot e^{-2}\end{aligned}\]
\(e\) is Euler's number, a mathematical constant that is approximately \(2.71828\).