(3x+1)(2x-39)-(3x+1)(2x-1)
You asked:
Evaluate the expression: \(\left(3 x + 1\right) \cdot \left(2 x - 39\right) - \left(3 x + 1\right) \cdot \left(2 x - 1\right)\)
MathBot Answer:
Evaluated
\(\displaystyle \left(3 x + 1\right) \cdot \left(2 x - 39\right) - \left(3 x + 1\right) \cdot \left(2 x - 1\right) = \left(2 x - 39\right) \left(3 x + 1\right) - \left(2 x - 1\right) \left(3 x + 1\right) \)
Expanded
\[\left(3 x + 1\right) \cdot \left(2 x - 39\right) - \left(3 x + 1\right) \cdot \left(2 x - 1\right) = - 114 x - 38\]
Factored
\[\left(3 x + 1\right) \cdot \left(2 x - 39\right) - \left(3 x + 1\right) \cdot \left(2 x - 1\right) = - 38 \cdot \left(3 x + 1\right)\]