2x(x-y-z)+2y(x+y-z)+2z(x-y+z)

asked by guest
on Mar 28, 2025 at 2:26 am



You asked:

Evaluate the expression: 2x(xyz)+2y(x+yz)+2z(xy+z)2 x \left(x - y - z\right) + 2 y \left(x + y - z\right) + 2 z \left(x - y + z\right)

MathBot Answer:

Evaluated



2x(xyz)+2y(x+yz)+2z(xy+z)=2x(xyz)+2y(x+yz)+2z(xy+z)\displaystyle 2 x \left(x - y - z\right) + 2 y \left(x + y - z\right) + 2 z \left(x - y + z\right) = 2 x \left(x - y - z\right) + 2 y \left(x + y - z\right) + 2 z \left(x - y + z\right)


Expanded

2x(xyz)+2y(x+yz)+2z(xy+z)=2x2+2y24yz+2z22 x \left(x - y - z\right) + 2 y \left(x + y - z\right) + 2 z \left(x - y + z\right) = 2 x^{2} + 2 y^{2} - 4 y z + 2 z^{2}


Factored

2x(xyz)+2y(x+yz)+2z(xy+z)=2(x2+y22yz+z2)2 x \left(x - y - z\right) + 2 y \left(x + y - z\right) + 2 z \left(x - y + z\right) = 2 \left(x^{2} + y^{2} - 2 y z + z^{2}\right)