(1)*($x^{2}$-1)*($x^{2}$+2x-5)
You asked:
Evaluate the expression: \(1 \cdot \left({x}^{2} - 1\right) \cdot \left({x}^{2} + 2 x - 5\right)\)
MathBot Answer:
Evaluated
\(\displaystyle 1 \cdot \left({x}^{2} - 1\right) \cdot \left({x}^{2} + 2 x - 5\right) = \left(x^{2} - 1\right) \left(x^{2} + 2 x - 5\right) \)
Expanded
\[1 \cdot \left({x}^{2} - 1\right) \cdot \left({x}^{2} + 2 x - 5\right) = x^{4} + 2 x^{3} - 6 x^{2} - 2 x + 5\]
Factored
\[1 \cdot \left({x}^{2} - 1\right) \cdot \left({x}^{2} + 2 x - 5\right) = \left(x - 1\right) \left(x + 1\right) \left(x^{2} + 2 x - 5\right)\]