((20.12+11.76)/2*194)-928.95-26.36=

asked by guest
on Nov 25, 2024 at 11:57 am



You asked:

Evaluate the expression: \(\frac{20.12 + 11.76}{2} \cdot 194 - 928.95 - 26.36\)

MathBot Answer:

\[\frac{20.12 + 11.76}{2} \cdot 194 - 928.95 - 26.36 = \frac{42741}{20} = 2137.05\]


\[\begin{aligned}\frac{20.12 + 11.76}{2} \cdot 194 - 928.95 - 26.36& = \left(20 + \frac{12}{100} + 11 + \frac{76}{100}\right) \cdot \frac{194}{2} - \left(928 + \frac{95}{100}\right) - \left(26 + \frac{36}{100}\right)\\& = \left(20 + \frac{3}{25} + 11 + \frac{76}{100}\right) \cdot \frac{194}{2} - \left(928 + \frac{95}{100}\right) - \left(26 + \frac{36}{100}\right)\\& = \left(20 + \frac{3}{25} + 11 + \frac{19}{25}\right) \cdot \frac{194}{2} - \left(928 + \frac{95}{100}\right) - \left(26 + \frac{36}{100}\right)\\& = \left(\frac{503}{25} + 11 + \frac{19}{25}\right) \cdot \frac{194}{2} - \left(928 + \frac{95}{100}\right) - \left(26 + \frac{36}{100}\right)\\& = \left(\frac{778}{25} + \frac{19}{25}\right) \cdot \frac{194}{2} - \left(928 + \frac{95}{100}\right) - \left(26 + \frac{36}{100}\right)\\& = \frac{797}{25} \cdot \frac{194}{2} - \left(928 + \frac{95}{100}\right) - \left(26 + \frac{36}{100}\right)\\& = \frac{797}{50} \cdot 194 - \left(928 + \frac{95}{100}\right) - \left(26 + \frac{36}{100}\right)\\& = \frac{77309}{25} - \left(928 + \frac{95}{100}\right) - \left(26 + \frac{36}{100}\right)\\& = \frac{77309}{25} - \left(928 + \frac{19}{20}\right) - \left(26 + \frac{36}{100}\right)\\& = \frac{77309}{25} - \frac{18579}{20} - \left(26 + \frac{36}{100}\right)\\& = \frac{77309}{25} - \frac{18579}{20} - \left(26 + \frac{9}{25}\right)\\& = \frac{77309}{25} - \frac{18579}{20} - \frac{659}{25}\\& = \frac{216341}{100} - \frac{659}{25}\\& = \frac{42741}{20}\end{aligned}\]