expand and fully simplify (t-2)(t+5)(t-4)

asked by guest
on Nov 18, 2024 at 3:46 pm



You asked:

Simplify the expression: \(\left(t - 2\right) \cdot \left(t + 5\right) \cdot \left(t - 4\right)\)

MathBot Answer:

Simplified:

\[ \left(t - 2\right) \cdot \left(t + 5\right) \cdot \left(t - 4\right) = \left(t - 4\right) \left(t - 2\right) \left(t + 5\right) \]


Expanded:

\[ \left(t - 2\right) \cdot \left(t + 5\right) \cdot \left(t - 4\right) = t^{3} - t^{2} - 22 t + 40 \]


Factored:

\[ \left(t - 2\right) \cdot \left(t + 5\right) \cdot \left(t - 4\right) = \left(t - 4\right) \left(t - 2\right) \left(t + 5\right) \]