x/y - x = -2 y/x + y = 5/2

asked by menachem48z
on Apr 04, 2025 at 11:37 pm



You asked:

Solve the system of equations:xyx=2yx+y=52\begin{aligned}\frac{x}{y} - x &= -2\\\frac{y}{x} + y &= \frac{5}{2}\end{aligned}

MathBot Answer:

The system of equations has one solution.

x=4,y=2x = 4, y = 2


Solve x+xy=2- x + \frac{x}{y} = -2 for xx. x=2yy1x = \frac{2 y}{y - 1}Substitute 2yy1\frac{2 y}{y - 1} for xx in y+yx=52y + \frac{y}{x} = \frac{5}{2} and simplify. y+yx=52y+y(2yy1)=52y=2\begin{aligned}y + \frac{y}{x} &= \frac{5}{2} \\ y + \frac{y}{\left(\frac{2 y}{y - 1}\right)} &= \frac{5}{2} \\ y &= 2 \end{aligned}Substitute 22 into x+xy=2- x + \frac{x}{y} = -2 to solve for xx. x2=2x=4\begin{aligned}- \frac{x}{2} &= -2\\x &= 4\end{aligned}This yields the following solution. x=4,y=2\begin{aligned}x = 4,\,y = 2\end{aligned}

    • Axis Limits
    • min x
    • max x
    • min y
    • max y
  • Update Axis Limits
Close Controls