∛3a+9 = ∛6a+15
You asked:
Solve the equation \(\sqrt[3]{3} \cdot a + 9 = \sqrt[3]{6} \cdot a + 15\) for the variable \(a\).
MathBot Answer:
The solution is: \[a = \frac{6}{\sqrt[3]{3} - \sqrt[3]{6}} \approx -16.005505\]
\[\begin{aligned}\sqrt[3]{3} a + 9 &= \sqrt[3]{6} a + 15\\a \left(- \sqrt[3]{6} + \sqrt[3]{3}\right) &= 6\\a &= \frac{6}{- \sqrt[3]{6} + \sqrt[3]{3}}\end{aligned}\]