923.14{9}^{2} \cdot 3.14 - 6^2*3.14

asked by guest
on Jan 28, 2025 at 10:04 pm



You asked:

Evaluate the expression: 923.14623.14{9}^{2} \cdot 3.14 - {6}^{2} \cdot 3.14

MathBot Answer:

923.14623.14=141310=141.3{9}^{2} \cdot 3.14 - {6}^{2} \cdot 3.14 = \frac{1413}{10} = 141.3


923.14623.14=92(3+14100)62(3+14100)=81(3+14100)62(3+14100)=81(3+750)62(3+14100)=811575062(3+14100)=127175062(3+14100)=127175036(3+14100)=127175036(3+750)=12717503615750=1271750282625=141310\begin{aligned}{9}^{2} \cdot 3.14 - {6}^{2} \cdot 3.14& = 9^{2} \cdot \left(3 + \frac{14}{100}\right) - 6^{2} \cdot \left(3 + \frac{14}{100}\right)\\& = 81 \cdot \left(3 + \frac{14}{100}\right) - 6^{2} \cdot \left(3 + \frac{14}{100}\right)\\& = 81 \cdot \left(3 + \frac{7}{50}\right) - 6^{2} \cdot \left(3 + \frac{14}{100}\right)\\& = 81 \cdot \frac{157}{50} - 6^{2} \cdot \left(3 + \frac{14}{100}\right)\\& = \frac{12717}{50} - 6^{2} \cdot \left(3 + \frac{14}{100}\right)\\& = \frac{12717}{50} - 36 \cdot \left(3 + \frac{14}{100}\right)\\& = \frac{12717}{50} - 36 \cdot \left(3 + \frac{7}{50}\right)\\& = \frac{12717}{50} - 36 \cdot \frac{157}{50}\\& = \frac{12717}{50} - \frac{2826}{25}\\& = \frac{1413}{10}\end{aligned}