√(28.8² + 114.12²)
You asked:
MathBot Answer:
\[\sqrt{{28.8}^{2} + {114.12}^{2}} = \frac{9 \sqrt{106889}}{25} \approx 117.69797959183496536389708855032563\]
\[\begin{aligned}\sqrt{{28.8}^{2} + {114.12}^{2}}& = \sqrt{\left(28 + \frac{8}{10}\right)^{2} + \left(114 + \frac{12}{100}\right)^{2}}\\& = \sqrt{\left(28 + \frac{4}{5}\right)^{2} + \left(114 + \frac{12}{100}\right)^{2}}\\& = \sqrt{\left(\frac{144}{5}\right)^{2} + \left(114 + \frac{12}{100}\right)^{2}}\\& = \sqrt{\frac{20736}{25} + \left(114 + \frac{12}{100}\right)^{2}}\\& = \sqrt{\frac{20736}{25} + \left(114 + \frac{3}{25}\right)^{2}}\\& = \sqrt{\frac{20736}{25} + \left(\frac{2853}{25}\right)^{2}}\\& = \sqrt{\frac{20736}{25} + \frac{8139609}{625}}\\& = \sqrt{\frac{8658009}{625}}\\& = \frac{9}{25} \cdot \sqrt{106889}\end{aligned}\]