solve cos(x)sin(x)=0

asked by guest
on Apr 04, 2025 at 6:17 am



You asked:

Solve the equation cos(x)sin(x)=0\cos\left( x \right) \sin\left( x \right) = 0 for the variable xx.

MathBot Answer:

The real solutions are: x={2πn  |  nZ}{6.2831853n  |  nZ}x={π(1+2n)  |  nZ}{6.2831853n+3.1415927  |  nZ}x={π(1+4n)2  |  nZ}{6.2831853n+1.5707963  |  nZ}x={π(3+4n)2  |  nZ}{6.2831853n+4.712389  |  nZ}\begin{aligned}x &= \left\{2 \pi n\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n\; \middle|\; n \in \mathbb{Z}\right\}\\x &= \left\{\pi \left(1 + 2 n\right)\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 3.1415927\; \middle|\; n \in \mathbb{Z}\right\}\\x &= \left\{\frac{\pi \left(1 + 4 n\right)}{2}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 1.5707963\; \middle|\; n \in \mathbb{Z}\right\}\\x &= \left\{\frac{\pi \left(3 + 4 n\right)}{2}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 4.712389\; \middle|\; n \in \mathbb{Z}\right\}\end{aligned}