e^x(y-3(e^x+1)^2)dx+(e^x+1)^2dy
You asked:
MathBot Answer:
Evaluated
\(\displaystyle {e}^{x \cdot \left(y - 3 \cdot {\left( {e}^{x} + 1 \right)}^{2}\right)} \cdot d x + {\left( {e}^{x} + 1 \right)}^{2} \cdot d y = d x e^{x \left(y - 3 \left(e^{x} + 1\right)^{2}\right)} + d y \left(e^{x} + 1\right)^{2} \)
Expanded
\[{e}^{x \cdot \left(y - 3 \cdot {\left( {e}^{x} + 1 \right)}^{2}\right)} \cdot d x + {\left( {e}^{x} + 1 \right)}^{2} \cdot d y = d x e^{- 3 x} e^{x y} e^{- 3 x e^{2 x}} e^{- 6 x e^{x}} + d y e^{2 x} + 2 d y e^{x} + d y\]
Factored
\[{e}^{x \cdot \left(y - 3 \cdot {\left( {e}^{x} + 1 \right)}^{2}\right)} \cdot d x + {\left( {e}^{x} + 1 \right)}^{2} \cdot d y = d \left(x e^{- 3 x} e^{x y} e^{- 3 x e^{2 x}} e^{- 6 x e^{x}} + y e^{2 x} + 2 y e^{x} + y\right)\]
\(e\) is Euler's number, a mathematical constant that is approximately \(2.71828\).