(7+2√50)(5-2√2)

asked by guest
on Nov 27, 2024 at 7:18 pm



You asked:

Evaluate the expression: \(\left(7 + 2 \cdot \sqrt{50}\right) \cdot \left(5 - 2 \cdot \sqrt{2}\right)\)

MathBot Answer:

\[\left(7 + 2 \cdot \sqrt{50}\right) \cdot \left(5 - 2 \cdot \sqrt{2}\right) = \left(5 - 2 \sqrt{2}\right) \left(7 + 10 \sqrt{2}\right) \approx 45.91168824543142175686079407154913\]


\[\begin{aligned}\left(7 + 2 \cdot \sqrt{50}\right) \cdot \left(5 - 2 \cdot \sqrt{2}\right)& = \left(7 + 2 \cdot 5 \cdot \sqrt{2}\right) \cdot \left(5 - 2 \cdot \sqrt{2}\right)\\& = \left(7 + 10 \cdot \sqrt{2}\right) \cdot \left(5 - 2 \cdot \sqrt{2}\right)\\& = \left(5 - 2 \cdot \sqrt{2}\right) \cdot \left(7 + 10 \cdot \sqrt{2}\right)\end{aligned}\]