(18*d+200)/9x = (18*d+200)/(9x+9) +1
d/x=(9*d+200)/9
You asked:
Solve the system of equations:\[\begin{aligned}\frac{18 d + 200}{9 x} &= \frac{18 d + 200}{9 x + 9} + 1\\\frac{d}{x} &= \frac{9 d + 200}{9}\end{aligned}\]
MathBot Answer:
The system of equations has \(2\) solutions.
\[d = - \frac{391}{36} + \frac{\sqrt{791} i}{12} + \frac{\left(\frac{1}{2} + \frac{\sqrt{791} i}{6}\right)^{2}}{2}, x = \frac{1}{2} + \frac{\sqrt{791} i}{6}\]\[d = - \frac{391}{36} + \frac{\left(\frac{1}{2} - \frac{\sqrt{791} i}{6}\right)^{2}}{2} - \frac{\sqrt{791} i}{12}, x = \frac{1}{2} - \frac{\sqrt{791} i}{6}\]
\(i\) is the imaginary unit, defined as \(i^2 = -1\).