( $a^{2}$ + 2a * $\sqrt{4b}$ + 4b ) / ( $a^{2}$ - 4b)
You asked:
Evaluate the expression: \(\frac{{a}^{2} + 2 a \sqrt{4 b} + 4 b}{{a}^{2} - 4 b}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{{a}^{2} + 2 a \sqrt{4 b} + 4 b}{{a}^{2} - 4 b} = \frac{4 \sqrt{b} a + a^{2} + 4 b}{a^{2} - 4 b} \)
Expanded
\[\frac{{a}^{2} + 2 a \sqrt{4 b} + 4 b}{{a}^{2} - 4 b} = \frac{4 \sqrt{b} a}{a^{2} - 4 b} + \frac{a^{2}}{a^{2} - 4 b} + \frac{4 b}{a^{2} - 4 b}\]