(1/36)+(1/35)+(1/34)

asked by guest
on Nov 19, 2024 at 10:18 am



You asked:

Evaluate the expression: \(\frac{1}{36} + \frac{1}{35} + \frac{1}{34}\)

MathBot Answer:

\[ \frac{1}{36} + \frac{1}{35} + \frac{1}{34} = \frac{1837}{21420} = 0.08\overline{576097105508870214752567693744164332399626517273} \]


The sum can be computed by rewriting each term over a common denominator, where the least common denominator of \(\frac{1}{36}\), \(\frac{1}{35}\), and \(\frac{1}{34}\) is \(21420\). \[ \begin{aligned} \frac{1}{36} + \frac{1}{35} + \frac{1}{34} &= \frac{1 \cdot 595}{36 \cdot 595} + \frac{1 \cdot 612}{35 \cdot 612} + \frac{1 \cdot 630}{34 \cdot 630} \\ &= \frac{595 + 612 + 630}{21420} \\ &= \frac{1837}{21420} \end{aligned} \]