X² = ((3-1.05)²)/1.05+ ((7-8.50)²)/8.50+((0-0.46)²)/0.46+((6-7.63)²)/7.63+((64-62.03)²)/62.03+((3-3.34)²)/3.34+((4-4.08)²)/4.08+((33-33.13)²)/33.13+((2-1.78)²)/1.78+((0-0.42)²)/0.42+((3-3.40)²)/3.40+((1-0.18)²)/0.18+((3-2.82)²)/2.82+((23-22.92)²)/22.92+((1-1.24)²)/1.24
You asked:
MathBot Answer:
Take the square root of both sides of the equation $$\begin{aligned}X^{2} &= \frac{\left(23 - \left(92 \cdot \frac{1}{100} + 22\right)\right)^{2}}{92 \cdot \frac{1}{100} + 22} + \frac{\left(33 - \left(13 \cdot \frac{1}{100} + 33\right)\right)^{2}}{13 \cdot \frac{1}{100} + 33} + \frac{\left(4 - \left(8 \cdot \frac{1}{100} + 4\right)\right)^{2}}{8 \cdot \frac{1}{100} + 4} + \frac{\left(3 - \left(82 \cdot \frac{1}{100} + 2\right)\right)^{2}}{82 \cdot \frac{1}{100} + 2} + \frac{\left(2 - \left(78 \cdot \frac{1}{100} + 1\right)\right)^{2}}{78 \cdot \frac{1}{100} + 1} + \frac{\left(3 - \left(34 \cdot \frac{1}{100} + 3\right)\right)^{2}}{34 \cdot \frac{1}{100} + 3} + \frac{\left(1 - \left(24 \cdot \frac{1}{100} + 1\right)\right)^{2}}{24 \cdot \frac{1}{100} + 1} + \frac{\left(3 - \left(4 \cdot \frac{1}{10} + 3\right)\right)^{2}}{4 \cdot \frac{1}{10} + 3} + \frac{\left(64 - \left(3 \cdot \frac{1}{100} + 62\right)\right)^{2}}{3 \cdot \frac{1}{100} + 62} + \frac{\left(7 - \left(5 \cdot \frac{1}{10} + 8\right)\right)^{2}}{5 \cdot \frac{1}{10} + 8} + \frac{\left(6 - \left(63 \cdot \frac{1}{100} + 7\right)\right)^{2}}{63 \cdot \frac{1}{100} + 7} + \frac{\left(- \frac{42}{100} + 0\right)^{2}}{\frac{1}{100} \cdot 42} + \frac{\left(- \frac{46}{100} + 0\right)^{2}}{\frac{1}{100} \cdot 46} + \frac{\left(3 - \left(5 \cdot \frac{1}{100} + 1\right)\right)^{2}}{5 \cdot \frac{1}{100} + 1} + \frac{\left(1 - 18 \cdot \frac{1}{100}\right)^{2}}{\frac{1}{100} \cdot 18} \\ \sqrt{X^{2}} &= \sqrt{\frac{\left(23 - \left(92 \cdot \frac{1}{100} + 22\right)\right)^{2}}{92 \cdot \frac{1}{100} + 22} + \frac{\left(33 - \left(13 \cdot \frac{1}{100} + 33\right)\right)^{2}}{13 \cdot \frac{1}{100} + 33} + \frac{\left(4 - \left(8 \cdot \frac{1}{100} + 4\right)\right)^{2}}{8 \cdot \frac{1}{100} + 4} + \frac{\left(3 - \left(82 \cdot \frac{1}{100} + 2\right)\right)^{2}}{82 \cdot \frac{1}{100} + 2} + \frac{\left(2 - \left(78 \cdot \frac{1}{100} + 1\right)\right)^{2}}{78 \cdot \frac{1}{100} + 1} + \frac{\left(3 - \left(34 \cdot \frac{1}{100} + 3\right)\right)^{2}}{34 \cdot \frac{1}{100} + 3} + \frac{\left(1 - \left(24 \cdot \frac{1}{100} + 1\right)\right)^{2}}{24 \cdot \frac{1}{100} + 1} + \frac{\left(3 - \left(4 \cdot \frac{1}{10} + 3\right)\right)^{2}}{4 \cdot \frac{1}{10} + 3} + \frac{\left(64 - \left(3 \cdot \frac{1}{100} + 62\right)\right)^{2}}{3 \cdot \frac{1}{100} + 62} + \frac{\left(7 - \left(5 \cdot \frac{1}{10} + 8\right)\right)^{2}}{5 \cdot \frac{1}{10} + 8} + \frac{\left(6 - \left(63 \cdot \frac{1}{100} + 7\right)\right)^{2}}{63 \cdot \frac{1}{100} + 7} + \frac{\left(- \frac{42}{100} + 0\right)^{2}}{\frac{1}{100} \cdot 42} + \frac{\left(- \frac{46}{100} + 0\right)^{2}}{\frac{1}{100} \cdot 46} + \frac{\left(3 - \left(5 \cdot \frac{1}{100} + 1\right)\right)^{2}}{5 \cdot \frac{1}{100} + 1} + \frac{\left(1 - 18 \cdot \frac{1}{100}\right)^{2}}{\frac{1}{100} \cdot 18}} \end{aligned}$$
Remember that both positive and negative numbers will result in a positive number when squared, so a square root will have both a positive and a negative answer. $$\begin{aligned}X &= \pm \sqrt{\frac{\left(23 - \left(92 \cdot \frac{1}{100} + 22\right)\right)^{2}}{92 \cdot \frac{1}{100} + 22} + \frac{\left(33 - \left(13 \cdot \frac{1}{100} + 33\right)\right)^{2}}{13 \cdot \frac{1}{100} + 33} + \frac{\left(4 - \left(8 \cdot \frac{1}{100} + 4\right)\right)^{2}}{8 \cdot \frac{1}{100} + 4} + \frac{\left(3 - \left(82 \cdot \frac{1}{100} + 2\right)\right)^{2}}{82 \cdot \frac{1}{100} + 2} + \frac{\left(2 - \left(78 \cdot \frac{1}{100} + 1\right)\right)^{2}}{78 \cdot \frac{1}{100} + 1} + \frac{\left(3 - \left(34 \cdot \frac{1}{100} + 3\right)\right)^{2}}{34 \cdot \frac{1}{100} + 3} + \frac{\left(1 - \left(24 \cdot \frac{1}{100} + 1\right)\right)^{2}}{24 \cdot \frac{1}{100} + 1} + \frac{\left(3 - \left(4 \cdot \frac{1}{10} + 3\right)\right)^{2}}{4 \cdot \frac{1}{10} + 3} + \frac{\left(64 - \left(3 \cdot \frac{1}{100} + 62\right)\right)^{2}}{3 \cdot \frac{1}{100} + 62} + \frac{\left(7 - \left(5 \cdot \frac{1}{10} + 8\right)\right)^{2}}{5 \cdot \frac{1}{10} + 8} + \frac{\left(6 - \left(63 \cdot \frac{1}{100} + 7\right)\right)^{2}}{63 \cdot \frac{1}{100} + 7} + \frac{\left(- \frac{42}{100} + 0\right)^{2}}{\frac{1}{100} \cdot 42} + \frac{\left(- \frac{46}{100} + 0\right)^{2}}{\frac{1}{100} \cdot 46} + \frac{\left(3 - \left(5 \cdot \frac{1}{100} + 1\right)\right)^{2}}{5 \cdot \frac{1}{100} + 1} + \frac{\left(1 - 18 \cdot \frac{1}{100}\right)^{2}}{\frac{1}{100} \cdot 18}} \\ X = \sqrt{\frac{\left(23 - \left(92 \cdot \frac{1}{100} + 22\right)\right)^{2}}{92 \cdot \frac{1}{100} + 22} + \frac{\left(33 - \left(13 \cdot \frac{1}{100} + 33\right)\right)^{2}}{13 \cdot \frac{1}{100} + 33} + \frac{\left(4 - \left(8 \cdot \frac{1}{100} + 4\right)\right)^{2}}{8 \cdot \frac{1}{100} + 4} + \frac{\left(3 - \left(82 \cdot \frac{1}{100} + 2\right)\right)^{2}}{82 \cdot \frac{1}{100} + 2} + \frac{\left(2 - \left(78 \cdot \frac{1}{100} + 1\right)\right)^{2}}{78 \cdot \frac{1}{100} + 1} + \frac{\left(3 - \left(34 \cdot \frac{1}{100} + 3\right)\right)^{2}}{34 \cdot \frac{1}{100} + 3} + \frac{\left(1 - \left(24 \cdot \frac{1}{100} + 1\right)\right)^{2}}{24 \cdot \frac{1}{100} + 1} + \frac{\left(3 - \left(4 \cdot \frac{1}{10} + 3\right)\right)^{2}}{4 \cdot \frac{1}{10} + 3} + \frac{\left(64 - \left(3 \cdot \frac{1}{100} + 62\right)\right)^{2}}{3 \cdot \frac{1}{100} + 62} + \frac{\left(7 - \left(5 \cdot \frac{1}{10} + 8\right)\right)^{2}}{5 \cdot \frac{1}{10} + 8} + \frac{\left(6 - \left(63 \cdot \frac{1}{100} + 7\right)\right)^{2}}{63 \cdot \frac{1}{100} + 7} + \frac{\left(- \frac{42}{100} + 0\right)^{2}}{\frac{1}{100} \cdot 42} + \frac{\left(- \frac{46}{100} + 0\right)^{2}}{\frac{1}{100} \cdot 46} + \frac{\left(3 - \left(5 \cdot \frac{1}{100} + 1\right)\right)^{2}}{5 \cdot \frac{1}{100} + 1} + \frac{\left(1 - 18 \cdot \frac{1}{100}\right)^{2}}{\frac{1}{100} \cdot 18}} &,\, X=-\sqrt{\frac{\left(23 - \left(92 \cdot \frac{1}{100} + 22\right)\right)^{2}}{92 \cdot \frac{1}{100} + 22} + \frac{\left(33 - \left(13 \cdot \frac{1}{100} + 33\right)\right)^{2}}{13 \cdot \frac{1}{100} + 33} + \frac{\left(4 - \left(8 \cdot \frac{1}{100} + 4\right)\right)^{2}}{8 \cdot \frac{1}{100} + 4} + \frac{\left(3 - \left(82 \cdot \frac{1}{100} + 2\right)\right)^{2}}{82 \cdot \frac{1}{100} + 2} + \frac{\left(2 - \left(78 \cdot \frac{1}{100} + 1\right)\right)^{2}}{78 \cdot \frac{1}{100} + 1} + \frac{\left(3 - \left(34 \cdot \frac{1}{100} + 3\right)\right)^{2}}{34 \cdot \frac{1}{100} + 3} + \frac{\left(1 - \left(24 \cdot \frac{1}{100} + 1\right)\right)^{2}}{24 \cdot \frac{1}{100} + 1} + \frac{\left(3 - \left(4 \cdot \frac{1}{10} + 3\right)\right)^{2}}{4 \cdot \frac{1}{10} + 3} + \frac{\left(64 - \left(3 \cdot \frac{1}{100} + 62\right)\right)^{2}}{3 \cdot \frac{1}{100} + 62} + \frac{\left(7 - \left(5 \cdot \frac{1}{10} + 8\right)\right)^{2}}{5 \cdot \frac{1}{10} + 8} + \frac{\left(6 - \left(63 \cdot \frac{1}{100} + 7\right)\right)^{2}}{63 \cdot \frac{1}{100} + 7} + \frac{\left(- \frac{42}{100} + 0\right)^{2}}{\frac{1}{100} \cdot 42} + \frac{\left(- \frac{46}{100} + 0\right)^{2}}{\frac{1}{100} \cdot 46} + \frac{\left(3 - \left(5 \cdot \frac{1}{100} + 1\right)\right)^{2}}{5 \cdot \frac{1}{100} + 1} + \frac{\left(1 - 18 \cdot \frac{1}{100}\right)^{2}}{\frac{1}{100} \cdot 18}}\end{aligned}$$