(6.673 ∗ 10^-11 ∗ 5.98 ∗ 10^24 ∗1.99∗10^30)/(160∗10^9)

asked by guest
on Nov 27, 2024 at 7:29 pm



You asked:

Evaluate the expression: \(\frac{6.673 \cdot {10}^{-11} \cdot 5.98 \cdot {10}^{24} \cdot 1.99 \cdot {10}^{30}}{160 \cdot {10}^{9}}\)

MathBot Answer:

\[\frac{6.673 \cdot {10}^{-11} \cdot 5.98 \cdot {10}^{24} \cdot 1.99 \cdot {10}^{30}}{160 \cdot {10}^{9}} = 4963127162500000000000000000000000\]


\[\begin{aligned}\frac{6.673 \cdot {10}^{-11} \cdot 5.98 \cdot {10}^{24} \cdot 1.99 \cdot {10}^{30}}{160 \cdot {10}^{9}}& = \left(6 + \frac{673}{1000}\right) \cdot \frac{1}{10^{11}} \cdot \left(5 + \frac{98}{100}\right) \cdot 10^{24} \cdot \left(1 + \frac{99}{100}\right) \cdot 10^{30} \cdot \frac{1}{160 \cdot 10^{9}}\\& = \frac{6673}{1000} \cdot \frac{1}{10^{11}} \cdot \left(5 + \frac{98}{100}\right) \cdot 10^{24} \cdot \left(1 + \frac{99}{100}\right) \cdot 10^{30} \cdot \frac{1}{160 \cdot 10^{9}}\\& = \frac{6673}{1000} \cdot \frac{1}{100000000000} \cdot \left(5 + \frac{98}{100}\right) \cdot 10^{24} \cdot \left(1 + \frac{99}{100}\right) \cdot 10^{30} \cdot \frac{1}{160 \cdot 10^{9}}\\& = \frac{6673}{1000} \cdot \frac{1}{100000000000} \cdot \left(5 + \frac{49}{50}\right) \cdot 10^{24} \cdot \left(1 + \frac{99}{100}\right) \cdot 10^{30} \cdot \frac{1}{160 \cdot 10^{9}}\\& = \frac{6673}{1000} \cdot \frac{1}{100000000000} \cdot \frac{299}{50} \cdot 10^{24} \cdot \left(1 + \frac{99}{100}\right) \cdot 10^{30} \cdot \frac{1}{160 \cdot 10^{9}}\\& = \frac{6673}{1000} \cdot \frac{1}{100000000000} \cdot \frac{299}{50} \cdot 1000000000000000000000000 \cdot \left(1 + \frac{99}{100}\right) \cdot 10^{30} \cdot \frac{1}{160 \cdot 10^{9}}\\& = \frac{6673}{1000} \cdot \frac{1}{100000000000} \cdot \frac{299}{50} \cdot 1000000000000000000000000 \cdot \frac{199}{100} \cdot 10^{30} \cdot \frac{1}{160 \cdot 10^{9}}\\& = \frac{6673}{1000} \cdot \frac{1}{100000000000} \cdot \frac{299}{50} \cdot 1000000000000000000000000 \cdot \frac{199}{100} \cdot 1000000000000000000000000000000 \cdot \frac{1}{160 \cdot 10^{9}}\\& = \frac{6673}{1000} \cdot \frac{1}{100000000000} \cdot \frac{299}{50} \cdot 1000000000000000000000000 \cdot \frac{199}{100} \cdot 1000000000000000000000000000000 \cdot \frac{1}{160 \cdot 1000000000}\\& = \frac{6673}{1000} \cdot \frac{1}{100000000000} \cdot \frac{299}{50} \cdot 1000000000000000000000000 \cdot \frac{199}{100} \cdot \frac{1000000000000000000000000000000}{160000000000}\\& = \frac{6673}{1000} \cdot \frac{1}{100000000000} \cdot \frac{299}{50} \cdot 1000000000000000000000000 \cdot \frac{199}{100} \cdot 6250000000000000000\\& = \frac{6673}{100000000000000} \cdot \frac{299}{50} \cdot 1000000000000000000000000 \cdot \frac{199}{100} \cdot 6250000000000000000\\& = \frac{1995227}{5000000000000000} \cdot 1000000000000000000000000 \cdot \frac{199}{100} \cdot 6250000000000000000\\& = 399045400000000 \cdot \frac{199}{100} \cdot 6250000000000000000\\& = 794100346000000 \cdot 6250000000000000000\\& = 4963127162500000000000000000000000\end{aligned}\]