μconstrainti(x)={1,if ∑j=1maij⋅xj≤bimin0,if ∑j=1maij⋅xj>bimaxLinear function,otherwise \mu_{\text{constraint}_i}(x) = \begin{cases} 1, & \text{if } \sum_{j=1}^{m} a_{ij} \cdot x_j \leq b_i^{\text{min}} \\ 0, & \text{if } \sum_{j=1}^{m} a_{ij} \cdot x_j > b_i^{\text{max}} \\ \text{Linear function}, & \text{otherwise} \end{cases} μconstrainti(x)=⎩⎨⎧1,0,Linear function,if ∑j=1maij⋅xj≤biminif ∑j=1maij⋅xj>bimaxotherwise
asked by guest on Nov 15, 2024 at 10:16 am
I wasn't able to parse your question, but the HE.NET team is hard at work making me smarter.