if cosA = sqrt(3)/2 then what is cotA

asked by guest
on Nov 25, 2024 at 1:14 pm



You asked:

Given \(\cos\left( A \right) = \frac{\sqrt{3}}{2}\) evaluate the expression \(\cot\left( A \right)\).

MathBot Answer:

The principal value in \(0 \le A \le \pi\) is \(A \approx 0.52359878\)


The real solutions are: \[\begin{aligned}A &= \left\{\frac{\pi \left(11 + 12 n\right)}{6}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 5.7595865\; \middle|\; n \in \mathbb{Z}\right\}\\A &= \left\{\frac{\pi \left(1 + 12 n\right)}{6}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 0.52359878\; \middle|\; n \in \mathbb{Z}\right\}\end{aligned}\]


By substituting the principal value into the expression, we find that: $$\begin{aligned}\cot{\left(A \right)} \approx 1.7320508\end{aligned}$$