y'''+4y''+7y=0
You asked:
MathBot Answer:
\[y{\left(t \right)} = C_{3} e^{- \frac{\left(8 + 2^{\frac{2}{3}} \sqrt[3]{317 + 3 \sqrt{9345}} + \frac{32 \cdot \sqrt[3]{2}}{\sqrt[3]{317 + 3 \sqrt{9345}}}\right) t}{6}} + C_{1} e^{\frac{\left(-16 + 2^{\frac{2}{3}} \sqrt[3]{317 + 3 \sqrt{9345}} + \frac{32 \cdot \sqrt[3]{2}}{\sqrt[3]{317 + 3 \sqrt{9345}}}\right) t}{12}} \sin{\left(\frac{\sqrt[3]{2} \sqrt{3} \left(\frac{32}{\sqrt[3]{317 + 3 \sqrt{9345}}} - \sqrt[3]{2} \sqrt[3]{317 + 3 \sqrt{9345}}\right) t}{12} \right)} + C_{2} \cos{\left(\frac{\sqrt[3]{2} \sqrt{3} \left(\frac{32}{\sqrt[3]{317 + 3 \sqrt{9345}}} - \sqrt[3]{2} \sqrt[3]{317 + 3 \sqrt{9345}}\right) t}{12} \right)} e^{\frac{\left(-16 + 2^{\frac{2}{3}} \sqrt[3]{317 + 3 \sqrt{9345}} + \frac{32 \cdot \sqrt[3]{2}}{\sqrt[3]{317 + 3 \sqrt{9345}}}\right) t}{12}}\]
\(C_{1}\), \(C_{2}\), \(C_{3}\) are arbitrary constants.
\(e\) is Euler's number, a mathematical constant that is approximately \(2.71828\).